Transport Equations for Semiconductors: 773 (Lecture Notes in Physics, 773)

Transport Equations for Semiconductors: 773 (Lecture Notes in Physics, 773)

5.00 (1 Ratings by Goodreads)
ISBN13: 9783540895251
Condition: NEW Quantity
- +
1 item(s) in stock
imageWishlist This
  • image This purchase will help support literacy campaigns across the world
  • image BUY ONE GIVE ONE

Semiconductor devices are ubiquitous in the modern computer and telecommunications industry. A precise knowledge of the transport equations for electron flow in semiconductors when a voltage is applied is therefore of paramount importance for further technological breakthroughs.

In the present work, the author tackles their derivation in a systematic and rigorous way, depending on certain key parameters such as the number of free electrons in the device, the mean free path of the carriers, the device dimensions and the ambient temperature. Accordingly a hierarchy of models is examined which is reflected in the structure of the book: first the microscopic and macroscopic semi-classical approaches followed by their quantum-mechanical counterparts.

Type Book
Number Of Pages 332
Item Height 22 mm
Item Width 162 mm
Item Weight 698 Gram
Product Dimensions 162 x 22 x 242
Publisher Springer
Format Illustrated | 332

From the reviews:

The book is a comprehensive review of the main transport equations in semiconductors, presenting the state of the art from the point of view of mathematical modeling. ... The book is addressed to applied mathematicians, solid state physicists and electrical and electronic engineers, but it is as well a good introduction for graduate and Ph.D. students specializing in the transport of charge carriers in semiconductors. (Vittorio Romano, Mathematical Reviews, Issue 2011 k)